

mBrace Agile Performance Testing Page 1/14

mBrace Agile Performance Testing
White paper

Version 2.2

03 July 2015
Author: Michael Kok

mBrace Agile Performance Testing Page 2/14

Inhoud

1 Introduction .. 3
2 The nature of performance testing .. 3
3 Model based testing vs. conventional testing... 5
4 Apdex Index: judge good or bad ... 6
5 Sprint 01 / Transaction 01 .. 7
6 Sprint 01 before and after optimization .. 9

6.1 Sprint 01 before optimization... 9
6.2 Sprint 01 after optimization ... 9

7 Drill down .. 10
8 Whole application after 5 sprints – Time behavior.. 11

8.1 Before optimization ... 11
8.2 After optimization .. 11

9 Whole application - resource usage .. 12
9.1 Before optimisation ... 12
9.2 After optimisation .. 13

10 Concluding remarks ... 14

mBrace Agile Performance Testing Page 3/14

1 Introduction

Poor application performance can cause serious damage (loss of revenue, imago damage, costs of
repair) to a business. Performance testing is the technique to reduce risks of poor application
performance. Performance testing is commonly done through load and stress testing in the
Implementation Phase only after the entire application is ready. Load and stress testing is complicated
and expensive. Moreover the fact that it is done so late in the life cycle of the application has serious
disadvantages. The cycle Build – Test – Improve takes too long. Repairing defects is inefficient this way
and there is the chance of unexpected need for redesign, which can seriously delay delivery of the
application.

At the same time application development faces increased pressure from the following requirements:
• Earlier insight in application quality including performance
• Earlier testing (begins in Construction)
• Speedup of delivering applications
• Continuous delivery and integration
• High release frequency (2 releases per day)

With conventional load and stress testing done in the Implementation phase, application
development cannot meet these requirements. The above requirements need a method of
performance testing that can be done much earlier while the application is still in its Construction
phase. If we want to meet these requirements it is obvious that performance testing should shift from
testing in the Implementation phase to the Construction phase of the application life cycle.

mBrace developed the Agile Method of performance testing on an entirely different paradigm
applying transaction profiling and performance modelling. This eliminates the disadvantages and
enables you to integrate performance testing with construction of applications the Agile way.

The tooling is installed in an arbitrary test environment with modest requirements. The test
environment for instance does not need to have production like capacities. The developers can
conduct the performance tests by themselves while building the transactions of the application. They
start the test and execute one or more transactions that have been built. The tooling produces a
profile of each transaction tested. Ref[1] shows more detail about transaction profiles the mBrace
way. Next they can inspect the results and decide if the performance is OK. If not they can see where
the best PIOs (Performance Optimisation Opportunities) are and start improving immediately until
the transaction meets the requirements. Software can be delivered under a new definition of Done
that now includes performance.

In this white paper we outline the way Agile Performance Testing is done. In the next sections we
have a look at the nature of performance testing and the differences between conventional and
model based performance testing and then show how it is done.

2 The nature of performance testing

Performance testing is done in the first place to reduce the risk of poor performance for the end-user,
since this can cause severe damage to a business. Hence performance testing should be governed by
a risk assessment. But what does the risk looks alike?

In order to achieve acceptable user experience we have to deal with three main areas of risk that are
revealed in the following figure.

mBrace Agile Performance Testing Page 4/14

Figure 1. Performance risk areas of an application

1. Application code.

The software of the application should be efficient qua time and resource consumption. Small
innocent problems may cause harmful defects. Loops must be as short as possible, system
services must be used in the right way, database locks and mutexes must be involved as short as
possible, memory leaks must be avoided etc.
Securing the performance potential of the application code is commonly done in the Acceptance
test just prior to go live. This often happens several months after the code was created. Repair
may be done by another programmer or the original programmer may already have forgotten
many of the considerations underpinning his code. Ideally repair should be done in the
Construction phase of application development as soon after the code was created as possible.
This can be done component by component while steadily completing the application as a whole.

2. Hardware and software capacities.

Many performance problems are caused by lack of capacity on one or more resources. When
implementing the application in a production environment there must be sufficient capacities for
all resources, hardware and software. Hardware resources include CPU’s, disks, memory,
networks etc. Software resources include session pools, connection pools, heaps, garbage
collectors, locks and single threaded software modules. Capacity supplies must be such that
utilisation percentages of these resources must be sufficiently low at the target volume of the
application in order to avoid delays caused by queuing.
Securing the balance between supply and demand of capacities is now done commonly in the
Acceptance performance test, but can be done earlier at the end of the Construction phase
immediately after building the entire application is completed.

Model based performance testing is much more efficient for this. Conventional testing stumbles
from bottleneck to bottleneck. In contrast, model based testing shows all bottlenecks after one
test cycle together with accurate quantification. If there are capacity issues on software
resources, conventional testing will show that an issue may exist without revealing which
resource is the cause. The performance model helps to pinpoint the software resource and
provides the parameter setting.

3. Implementation

At implementation all configuration and parameter settings must be optimal and all hardware
and software must work functionally correct. Testing this is done commonly in the Acceptance
phase, but should be done earlier at the end of the Implementation phase.
Proper functioning of hardware, e.g. does the load balancer correctly distribute the traffic over
four servers, should be physically tested with a load test. Hence (if the risk assessment indicates
so) Implementation testing requires conventional load testing and this should be done no earlier
than after the infrastructure and the platforms are prepared for commissioning the first release
of an application. Whether this has to be done anyway depends on the risk assessment and
following considerations. Do we release a new built on an existing infrastructure that has proven
to be OK? Then we have a low risk and the Implementation test could be skipped. If an extra

mBrace Agile Performance Testing Page 5/14

piece of functionality is added to a large application, we need to test the code, guard the
capacities but the risk that the infrastructure all of a sudden causes new problems is low. Hence
the implementation test could be skipped.

There are not many cases where Implementation testing is necessary and when it is done it can
be done with a small selection of the application functionality saving much scripting and test
effort.

A risk assessment that forms the basis for decision making on conducting performance tests yes or no,
should address each of the above three areas.

With Agile performance testing the point of gravity of performance testing shifts to the earlier stages
of the application development process. But as was shown above not all testing is shifted upfront
towards the Construction phase of the application. The Code testing shifts completely upfront to the
Construction Phase. Capacity optimisation shifts back to the end of the Construction phase and
Implementation testing can be done after the preparations for commissioning are complete.
Acceptance testing shrinks to a demo to the end-users.

3 Model based testing vs. conventional testing

The conventional method of performance testing throws load at a real system. When the load is
increased the response times extend until they are not acceptable. Then we know the max load and
can decide if that is enough to commission the application, but we do not gain much more insight for
improvement. We do not obtain response time breakdowns so we do not know much about where
the transactions spend their time.
The mBrace method for model based performance testing is based on transaction profiling. The next
figure shows the profile of one transaction (For the sake of simplicity only one transaction profile is
shown. Commonly the figure shows a bunch of them.) executed on a multitier infrastructure with
client PC’s, web servers, application servers and database servers, all interconnected by networks.

Figure 2. Transaction profile

The transaction profiles reflect the Performance-DNA of the application software and show the single
user response time (1.2 seconds) plus a breakdown of it. E.g. the large green part reflects the time
spent in the outbound part of the network (Net Out). The legend to the right explains the colours of
the breakdown. The profiles make it clear where the transactions spend or waste their time. The
transaction profile reveals the performance potential of the transaction at a glance and by showing
the PIOs (Performance Improvement Opportunities) plays a crucial role in evaluating performance. In
this example it is obvious that the green part (time needed for outbound network traffic of the

mBrace Agile Performance Testing Page 6/14

transaction) takes most of the time. Hence outbound network IO is the first candidate for
improvement.

When the transaction volume is input to the model the multiuser response time can be predicted for
the target transaction volume. The result is shown in a similar figure that shows a response time and
breakdown that are extended by time consuming components for queuing for loaded resources. This
enables us to do load tests and stress tests within the model without throwing real load to an
application in some test environment.

Next we show an example of a Build – Test – Improve cycle.

4 Apdex Index: judge good or bad

For deciding about good or bad performance you might (at your own discretion) use the Apdex Index.
mBrace supports the Apdex Index in its tooling.

The Apdex Index requires norms that are set by user representatives. This is what Wikipedia tells
about Apdex: “Apdex (Application Performance Index) is an open standard developed by an alliance
of companies, the Apdex Alliance. It defines a standard method for reporting and comparing the
performance of software applications in computing. Its purpose is to convert measurements into
insights about user satisfaction, by specifying a uniform way to analyze and report on the degree to
which measured performance meets user expectations.”

Based on the user’s opinions on acceptable performance a low limit and a high limit are set. When a
transaction has a response time below the low limit its count for “excellent” is increased by 1. When a
transaction has a response time above the high limit it has unacceptable performance and the count
for “excellent” is not increased. When a transaction has a response time between the low and the
high limit the count for “excellent” is increased by only 0.5. The resulting score is divided by the total
number of transactions yielding a figure between 0 and 1, the Apdex Index. A score of 1 means that
the application fully meets the requirements of the user and has excellent performance. A score of 0
means that no transaction meets the requirements of the users and the application performs
unacceptable. E.g. a 0.6 score means barely sufficient etc.

In the example we are showing in the next sections the limits are set to 2, respectively 8 seconds.

After each test cycle / measurement the Apdex Index is determined guiding the developer for
deciding to further optimise the code or not.

mBrace Agile Performance Testing Page 7/14

5 Sprint 01 / Transaction 01

The picture below shows two instances of profiles from the same transaction. The horizontal coloured
bars represent the profiles. The length of the bar indicates the total end to end response time of the
transaction. The coloured parts correspond with the times spent on the hardware resources of the
multitier infrastructure. The upper bar of the two (response time 8.1 seconds) reflects the
performance of the transaction in the test environment. The lower bar (response time 5.6 seconds) is
a projection of the performance of the transaction when executed in the production environment.
Obviously the hardware of the production environment is faster than the test environment.

Both bars relate to the transaction before optimization.

Figure 3.

After optimization, the resulting profile, projected on the production environment only, looks like the
next picture shows (picture on the same scale!)

Figure 4.

In order to make the projection onto the production environment, of course the hardware
characteristics of both environments have been fed into the model.

mBrace Agile Performance Testing Page 8/14

Mind the scale of response time in the chart! This is the same transaction:

Figure 5.

mBrace Agile Performance Testing Page 9/14

6 Sprint 01 before and after optimization

6.1 Sprint 01 before optimization

You can include as many transactions in a performance test as you like. You could for instance test
and optimize a complete sprint with four transactions.

Figure 6.

6.2 Sprint 01 after optimization

Most of the transactions are below 2 seconds now. Only one is still excessive. However the
Apdex Index displays 0.95, which is good performance. Hence in this case the Scrum Master
may decide to accept it for the time being, or shift more work to the backlog.

Figure 7.

mBrace Agile Performance Testing Page 10/14

7 Drill down

Transaction types Tx 015 B C and Tx 015 C C in Sprint01 have response times up to 6 seconds of which
2 seconds at the Web server and had to be reworked to optimise its performance. One of the drill
down features shows details of the web requests for each transaction type and helps to find the best
way to optimise. In this example the drill down feature reveals that 7 http requests are done in
transaction type Tx015 B C. See figure below that shows their names, response times and amount of
data transferred over the network.

Table 1. Drill down details of transaction type Tx015 B C: its web requests

The first http request in the list named searchForProposalElements shows the longest response time,
1.675869 sec, it sent 3,979 bytes out and received 118,312 bytes. Hence the decision was made to
take another look at this request in order to optimise the performance of transaction type Tx015 B C.
Upfront we know that the response time can be shortened with 1.675869 sec at max. Hence upfront
we also know that this may solve the problem a great deal, but not completely. The result was a new
request quickSearchForProposalElements with a response time of 0. 175754 that shortened the
response time with 1.5 seconds. Together with other improvements the response time was brought
below 2.0 seconds.

mBrace Agile Performance Testing Page 11/14

8 Whole application after 5 sprints – Time behavior

After all 5 sprints have finalized the profiles of the complete application with 20 transactions may be
shown for viewing the total improvement.

8.1 Before optimization

Figure 8. All transactions initially exceeded the norm firmly.

8.2 After optimization

Figure 9. Two transactions still exceed the norm of 2 seconds. Nevertheless the application as whole
scores an Apdex Index of 0.95, which is excellent.

mBrace Agile Performance Testing Page 12/14

9 Whole application - resource usage

9.1 Before optimisation

When construction of the application has completed it makes sense to inspect its resource usage. The upper part of the next chart unveils the utilisations on the hardware
resources. The utilisations should not be too high in order to avoid excessive queuing. The next two figures show the impact of the improvements on resource utilization.

Figure 10.

mBrace Agile Performance Testing Page 13/14

9.2 After optimisation

The next figure shows that not only the time behavior of the application has improved, but also that this has considerable positive impact on resource usage. Hardware can
be scaled down.

Figure 11.

mBrace Agile Performance Testing Page 14/14

10 Concluding remarks

Two capabilities of the mBrace Agile Performance Testing method make it especially suitable for
testing in Agile application development:

 Transaction profiling
 Application performance modelling

Together these two capabilities provide a method based on an entirely different paradigm.

Multitier transaction profiles (Performance DNA of the application) provide insight in the quality of
the code.
The performance model unveils the impact of that code quality on overall performance and capacity
need.

Performance modelling makes it possible to project transaction profiles obtained in an arbitrary test
environment and project them on the production environment. This enables us to optimise the
performance of an application much earlier in its lifecycle by integrating performance testing within
the Construction phase of application development.

The mBrace Data Collection Protocol enables the developers to efficiently test the code with a simple
push on the button. No specialised performance testers are needed. With the results the developers
oversee at a glance the performance of the transactions they build, if optimisation is necessary and
where the PIOs (Performance Improvement Opportunities) are. This (together with the mBrace
method for Regression Performance testing, see the separate white paper) enables a test method
with the following benefits:

 Earlier insight in application quality including performance
Is given transaction by transaction while the application is built.

 Earlier testing
Performance testing is done during Construction instead of during Implementation.

 Speedup of delivering applications
The cycle build – test - optimise / repair is much shorter. Optimisation or reparation takes
much less time during construction, than after several months in the Implementation phase.

 Continuous delivery and integration
Functionality to be released is not only functionally tested, but also tested and optimised for
performance, immediately ready for release.

 High release frequency (2 releases per day)
The short test and optimisation cycle enables the developers to deliver code that has been
tested and improved for performance. The definition of done is complete, so that the
software is ready for deployment enabling a high release frequency.

